
The Curious Listener

Overview
The Curious Listener is a system which automatically monitors the audio
activity in an area and records anything interesting! It consists of three types
of components which connect with each other over a standard TCP/IP
network: -

When a listener component has recorded something (speech, music, unusual
noises etc.), it uploads the digital sound file and information about the audio to
a remote database component. This stores information about the recording,
such as when it was made and what sort of sound activity it contains and
maintains a searchable catalogue of recordings. Eventually it is envisaged
that the server system will attempt to further analyse recordings based on
their formant signature, the patterns of unique sonic resonances present in an
individual’s speech – from which the system would attempt to identify the who
was speaking. Over time a centralised catalogue of sound recordings will be
built up, each tagged with its recording date and time and with a guess about
who is speaking…

The player client, is able to interrogate the database and retrieve any
recordings made within a specific timeframe. These files are then sampled
using a random algorithm and a customised dynamic envelope and played

Sound
Listener client

Database and
file storage

Player client Sound

back through multiple sound channels (mixed down to stereo in the present
system). The effect is of a continuously changing sound collage in which odd,
isolated words and phrases are heard fading in and out, but anything longer
than a couple of seconds is truncated and fragmented.

Each of the components of the system has a complex internal structure and
has been developed using OOP application design principles.

A more detailed picture of the system showing some of the internal detail is: -

Listener Client
The listener client is largely implemented in Director with Flash used for some
interface elements. Director was chosen due to its rapid development times,
ability to address the local file system and capability to deal with audio
effectively on both Mac and PC platforms. The automatic file uploader was
implemented using a local (apache) web server and php-curl components.

The audio monitor continually monitors the audio input level. If it rises rapidly
over a set sensitivity threshold, it triggers the recording component which logs

the start time and begins recording. The recording continues until a significant
period of non-activity has occurred (1.0 seconds in the current configuration).
However, the input level is monitored throughout the recording and off-on and
on-off transient times are logged: -

Here is a sample recording (note this has been normalised to -0.3 dB so that
transients can be identified visually).

The recording shown here is 2.77 seconds long and the listener client
identified 4 transient pairs (on + off) within this time:-

0 0.04
0.524 0.566
1.125 1.165
1.73 1.77

As soon as the recording is ended, the transient log is written to a text file and
then the analysis component runs a simple rule-based algorithm taking as
inputs the transit density, the average length of transients and the duration of
the shortest transient. This process returns a probable audio-type for the
recording – currently, the system attempts to distinguish between speech,
music and ‘unusual noise’.

Once the analysis is complete, the sound and data files are uploaded to the
server by a call to a php upload script running on a local web server (apache).
This rather complex arrangement is necessary since while Director is able to
access the local file system, php on a remote server is not without user
confirmation1, although one php-apache system can send files to another and
can access files on the machine it is running on.

After a successful upload has been confirmed by the remote file store, an
entry is made in the database catalogue (see below) using a Director call to a
remote php script and the local files are deleted.

Database and file server
The database is implemented in mySQL with a php/apache layer providing

the network interface for recorder and player clients.

The database schema showing the table and field names2 and data relations
is: -

Not all of these tables are used in the current implementation. The most
important table is s_files which stores details of all the recordings held in the
system.

The sound and transient data files are uploaded and downloaded using the
same apache web server used for delivering the php communication layer.
Principle components are: -

upload_file.php is called locally with a filename. It causes the local web server
to upload the specified sound and data files to the remote server.

store_sound.php is called by a remote listener client to add a sound file entry
to the database.

get_sound_list.php is called by a remote player client with start and end times
and dates. It returns a list of files recorded within the time period supplied.
These can then be downloaded by a standard http requests from the player
client.

show_status.php can be called from a browser and displays an image and

text indicating the current status of the listener client. It automatically
refreshes every 5 seconds and is designed for continual monitoring of system
status to alert people when recording is active. See
http://bartleby.ioct.dmu.ac.uk/~ianw37/listen/show_status.php

list_sounds.php can be called by a web browser and displays a list of the last
100 recordings made by the system formatted for a human reader. It is
designed as a diagnostic tool during development and would not be present
on a publicly deployed system. Sample output is: -

Recording
Date

Speaker Duration
(Secs)

Type Filename
(click to listen)

Transit
Data

28th February,
2007 at
17:44:20

unknown 9.544 speech 07_02_28_17_44_2972608
1

data

28th February,
2007 at
17:44:07

unknown 8.014 speech 07_02_28_17_43_2971563
0

data

28th February,
2007 at
17:43:57

unknown 24.988 speech 07_02_28_17_43_2968802
3

data

28th February,
2007 at
17:43:28

unknown 0.16 unusua
l noise

07_02_28_17_43_2968474
6

data

28th February,
2007 at
17:43:26

unknown 0.64 unusua
l noise

07_02_28_17_43_2968121
1

data

http://bartleby.ioct.dmu.ac.uk/~ianw37/listen/show_status.php

Player client
The player client is implemented as Director stand alone application, although
a Flash version designed for browser-based operation would also be relatively
simple, although less secure.

The client gets a list of sound files within it’s time period (which is part of the
player configuration settings) and then downloads them to the local web
cache. The sound playback part of the client is made up of 4 identical
playback engines.

The functional blocks of each are: -

Each playback engine has access to all the soundfiles that the player client
has obtained from the central file server. They are not synchronised (indeed
the pan-path generators are deliberately started with different values for
wavelength and phase so that sounds are spread across the stereo space.

Sound channel
control

Pan path
envelope

wavelength

Pan path
envelope
generator

Dynamic
envelope
generator

Sound file and
sample selector

and player

Sample duration
generator

Sound
channel

Pan position

level

1 Flash has the same limitation; it requires a user to select and confirm file uploads.
Unfortunately, Director does not have an open source (or cheap) CURL Xtra available
which would have made implementation much simpler.
2 Note that field data types are not shown due to space. Record identifiers are integers,
length 5; other fields are either characters or sql date formats accordingly.

